Schroedinger vs. Navier–Stokes
نویسنده
چکیده
Quantum mechanics has been argued to be a coarse-graining of some underlying deterministic theory. Here we support this view by establishing a map between certain solutions of the Schroedinger equation, and the corresponding solutions of the irrotational Navier–Stokes equation for viscous fluid flow. As a physical model for the fluid itself we propose the quantum probability fluid. It turns out that the (state-dependent) viscosity of this fluid is proportional to Planck’s constant, while the volume density of entropy is proportional to Boltzmann’s constant. Stationary states have zero viscosity and a vanishing time rate of entropy density. On the other hand, the nonzero viscosity of nonstationary states provides an information-loss mechanism whereby a deterministic theory (a classical fluid governed by the Navier–Stokes equation) gives rise to an emergent theory (a quantum particle governed by the Schroedinger equation).
منابع مشابه
Optimization with the time-dependent Navier-Stokes equations as constraints
In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...
متن کاملOptimal Smoothing and Decay Estimates for Viscously Damped Conservation Laws, with Application to the 2{d Navier Stokes Equation
Optimal bounds on the Lp(IR) smoothing and decay are established for certain viscously damped conservations laws, of which the vorticity formulation of the Navier–Stokes equation on IR is a basic example. From the smoothing bounds, we obtain pointwise bounds that provide optimal control on the spatial decay of solutions. We apply this in a study of the physically important case in which the int...
متن کاملInvestigation of instable fluid velocity in pipes with internal nanofluid flow based on Navier-Stokes equations
In this article, the instable fluid velocity in the pipes with internal nanofluid is studied. The fluid is mixed by SiO2, AL2O3, CuO and TiO2 nanoparticles in which the equivalent characteristic of nanofluid is calculated by rule of mixture. The force induced by the nanofluid is assumed in radial direction and is obtained by Navier-Stokes equation considering viscosity of nanofluid. The displac...
متن کاملA comparative study between two numerical solutions of the Navier-Stokes equations
The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...
متن کاملScientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations
The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016